Limnol. Oceanogr., 44(6), 1999, 1458–1476
نویسندگان
چکیده
This paper presents the results of a comparative study on the aerobic decomposition of six salt marsh plant species over a period of 2 yr. In addition to ash-free dry weight (AFDW) determination and elemental analysis (C and N), two analytic methods have been applied to obtain insight into the decomposition dynamics of lignin in the various plant tissues. The analytic methods are (1) cupric oxide (CuO) oxidation followed by gas chromatography– mass spectrometry (GC-MS) and (2) direct temperature-resolved mass spectrometry (DT-MS). AFDW losses could generally be well described by double exponential relations with time. Carbon-to-nitrogen ratios increased during the initial stages of decomposition and decreased again afterward. For five of the six plant species, a correlation between initial lignin content and AFDW loss was observed. Decay dynamics of lignin denoted a rapid relative increase during the first weeks of field exposure, followed by stabilizing contents over the next 2 yr. CuO oxidation data indicate the establishment of a stable ‘‘lignin endmember’’ within 1–2 months. DT-MS data, on the contrary, showed continuous modification of the lignin polymer throughout the duration of the experiment. Evidence was found for the incorporation of (presumably) microbial N-acetylglucosamine in the complex residue produced upon decomposition. Combination of CuO oxidation and DT-MS data suggested that lignin degradation products became attached to the original macromolecular material and could still be identified as lignin-derived material. The data support a humification mechanism via condensation of small degradation products instead of the selective preservation of certain biomacromolecules (like lignin). Lignin, a structural component of the cell walls of vascular plants and the second most abundant naturally occurring polymer in the biosphere (after cellulose), has a high preservation potential (Hedges and Mann 1979a; Swift et al. 1979; Kirk and Shimida 1985). Its decomposition is often regarded as the rate-limiting step in the biospheric cycle of carbon (Colberg 1988). Notwithstanding its relatively high 1 Present address: The FOM/AMOLF Institute. 2 Present address: The Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, Texas 78373-1267.
منابع مشابه
Limnol. Oceanogr., 44(4), 1999, 1184
that I can easily take to sea and consult as an authoritative reference. This book is not just an updated version of the Clay and Medwin predecessor—it is much more comprehensive, containing a good blend of theory and hard-won data from measurements made at sea and in the lab. The fact that its list price is less than the current price of the earlier book is an unexpected bonus! I strongly reco...
متن کاملLimnol. Oceanogr., 44(2), 1999, 447–454
Geophysical and ecological dynamics within lakes of the McMurdo Dry Valleys, Antarctica, are controlled by the presence of permanent ice covers. Despite the importance of the permanent ice cover, there have been no studies that have examined specific couplings between changes in the geophysical properties of the ice covers and dynamic ecological processes within the underlying water column. Her...
متن کاملMeasuring the ecological significance of microscale nutrient patches
parative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 27: 814-827. -, J. J. MCCARTHY, AND D. G. PEAVEY. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215. HEALEY, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5: 281-286. HUTCHINSON, G. E...
متن کاملLimnol. Oceanogr., 44(6), 1999, 1498–1508
There is an apparent mismatch between the high carbon demand of seals and seabirds breeding on the subantarctic island of South Georgia and the overall low primary production measured in the waters that surround the island. However, average phytoplankton production values may not be completely representative, and local systems may exist where primary production is considerably higher. Here, we ...
متن کاملLimnol. Oceanogr., 44(3), 1999, 699–702
Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m22 yr21 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999